
Generating User Interfaces from CDISC ODM for Mobile Devices

Guido M. de Melo, Jürgen Nagler-Ihlein, Michael Weber
Dept. of Media Informatics, University of Ulm, Germany

{guido.de-melo, juergen.nagler-ihlein, michael.weber}@uni-ulm.de

Abstract

Clinical studies are often conducted as multi-centered
studies involving participants at different locations.
Thus it becomes obvious that using mobile platforms
and remote data entry is beneficial for such studies.
When working in a distributed fashion, data exchange
standards are required. Bringing these standards to
the end user also requires incorporating user interface
issues. Considering various device types, from desktop
computer to small handheld devices raises the question
how user interfaces could be derived from the data
exchange standards. In this paper we consider
CDISC´s Operational Data Model as a data standard
and discuss its relevance in the user interface
generation process. Several candidate description
languages are explored and embedded into a general
transformation process emphasizing especially small
and mobile device characteristics.

1. Introduction

Traditionally clinical studies are conducted by
filling in forms on sheets of paper and later analyzing
the data gained. Due to widespread use of computers it
becomes obvious, that the data handling as well as data
entry can be supported by such devices. However,
since a personal computer, even a laptop, is not really
mobile and cannot be carried and used at the same time
on-site during a study, initial data entry still remained
mostly on paper and data entering was repeatedly done
afterwards on the computer again. This raises problems
of inconsistencies through mistyping, with the entire
process being time- and cost-intensive. On-site
electronic data capture (EDC) has been proposed to
alleviate this problem. Further advantages of EDC
systems are the legibility of the entered data and the
possibility to use range and plausibility checks while
entering the data, thus further improving data quality.

Over time a diversity of electronic clinical study
systems has emerged, all of which use their own digital

formats for storing and conveying data. This makes it
difficult to exchange data during a study between the
involved parties and systems. The required conversion
or adaptation process is time-consuming, prone to
errors, and also cost-intensive. Hence it is important to
use specific standards when developing new tools in
order to make them usable for a broad community.
Fortunately standards for study data have emerged
recently.

Information technology is embedded into more and
more devices, while people have come to depend on
digital services. At the same time, there is a growing
diversity of devices and their range is expanding in
modalities as well as in platforms: mobile phones,
handhelds, and notebooks to name only a few.

These mobile devices can easily be given to
patients, study nurses, or doctors to be carried on-site,
which makes it easier to conduct studies.

However, such remote data entry (RDE) is still
fraught with some problems. Mobile devices have
smaller displays and no keyboard or they are not
connected to a network. Many mobile devices cannot
run the software used for entering the data, since their
operating systems and APIs are too different from the
desktop computers being used so far. At the same time
they offer other input modalities like pen-based input,
which is in turn not supported by the traditional
software used for studies. It is possible to write an
application which can run on any platform, but
adaptation to the special features of each device is
another matter, as code written to run everywhere
cannot be optimized for every platform and also gets
bloated.

The challenge is therefore how to utilize a standard
description of case report forms (CRFs) to support
remote data entry on heterogeneous mobile devices.

The reminder of this paper is organized as follows.
In section 2 we describe the operational data model
(ODM) as a standard to define CRFs. Section 3 deals
with the generation process of deriving a user interface
(UI) from such models. In section 4 requirements on
user interface descriptions to mediate in the generation

process are outlined. Section 5 evaluates various
candidates to serve as a user interface description
language. Our findings are presented in section 6.

2. CDISC ODM

The Clinical Data Interchange Standards
Consortium (CDISC, www.cdisc.org) is an open,
multidisciplinary, non-profit organization founded in
1997. Its mission is to develop platform-independent
global data standards for clinical research. The
standards should assure information system inter-
operability and lead to improvements for medical
research and related areas of healthcare. CDISC’s first
success was to get its Study Data Tabulation Model
(SDTM) accepted by the FDA as a standard for data
submissions of clinical trials. While the SDTM was
developed to improve the exchange of results after a
trial, another CDISC standard, the Operational Data
Model (ODM), was developed to support all data
processes during a trial and to be a common format for
archiving study data.

With all the advantages of EDC in view, the FDA
encouraged the CDISC electronic Source Data
Interchange (eSDI) Group [1]. The group intends to
facilitate the use of electronic technology by
establishing CIDSC standards within clinical trials,
particularly the ODM. This is a strong indication for
ODM becoming a standard for electronically
representing a study, and it makes ODM a good choice
of a starting point of our approach.

2.1. Design of ODM

The ODM [2] is defined in XML and for its current

version 1.2.1 the XML Schema is considered
definitive. It is able to keep study metadata, study data,
and administrative data of a clinical trial. As the
intended use of ODM is to support the exchange and
archiving of trial data, only the information which
needs to be shared among different systems and to be
stored for regulatory purposes is part of the model.
Therefore, parts like the graphical representation of
CRFs or a concrete structuring of input fields are
neglected.

The ODM is divided into four big parts: <Study>
containing the structural definitions (meta-data) of the
study; <ReferenceData> for general data not
concerning a specific study subject; <ClinicalData>
storing the clinical values for each study subject; and
<AdminData> keeping information about users,
locations, and electronic signatures.

The most interesting part of ODM with regard to
the user interface of a trial is its Study section. It
contains global settings like the study name, a
description of the study, and measurement units. As
keeping all changes to the study metadata is supported,
the versioning of the study is realized by different
MetaDataVersions. The current state of the study is the
aggregate of subsequent MetaDataVersions. Within a
MetaDataVersion all input fields are defined within
structures in a strict hierarchical manner. The highest
definition levels are StudyEvents. Each StudyEvent
defines one or more Forms. A Form then contains
ItemGroups containing Items. These are the smallest
entities and correspond directly to an input field.

An Item is described by its name, data type, data
size, and a question used to label it on paper or on a
screen. Possible data types are integer, float, date,
datetime, time, and text. For a float the
SignificantDigits have to be specified. There are a
number of options to characterise the Item further. One
(the default) or more (all valid) MeasurementUnits can
be defined, or an optional CodeList which lists a
discrete set of permitted values. With RangeChecks
one is able to formulate comparisons as one-side
constraints with one or more membership checks
towards a set of values.

As clinical data systems frequently store more
information than can be expressed by the given ODM
elements, a vendor extension mechanism is provided
for proprietary extensions. This gives the possibility to
compliantly add and transport additional data which
may be needed by an application working with the
core ODM data.

2.2. Insufficiencies of ODM

While working with ODM we discovered that some

data types are missing as well as some points in which
the ODM should be extended to further support the
conduct of a study. Some of these aspects are being
discussed by the ODM team and may in the near future
be incorporated into the standard. To preliminarily
overcome these obstacles we employ the vendor
extension mechanism described above. In case the
standard would not be extended, our adaptations can
be kept as vendor extensions without interfering with
the rest of ODM data.

In our view, forms contain more data types than the
set provided by ODM; especially Booleans and arrays
of values are often used in trials. It is of course
possible to store all conceivable data as text but then
no semantic information on the data is available. Such
semantic information can be used to provide adequate
input elements and we therefore introduce an

additional attribute SubDataType for Items which
carries this information.

RangeChecks, the possibility of validating input
against its data type, and the declaration of mandatory
Items are a first step in the direction of achieving better
quality by checking data while capturing it. Immediate
checks of input values can give the user an instant hint
or mark values as invalid. So in the monitoring process
fewer errors are found, and fewer queries have to be
sent to and processed by the investigator. But a broader
variety of checks, syntactic and semantic, can be
imagined, e.g. complex syntactic checks, dependencies
between input fields, or calculations of differences in
date. We have therefore developed a vendor extension
for checks within Items.

Many parts of CRFs have always been left blank as
they are only needed if a specific precondition is met.
A famous example is the question of pregnancy in
dependence of gender. Such fields are conditional and
their condition can be formulated like the checks for
validity. As not only Items but whole StudyEvents,
Forms, and ItemGroups can occur conditionally, we
built a vendor extension element Condition which can
include checks that can even be applied to these
elements.

The structuring mechanism of ODM for Forms only
allows having two levels: Items within ItemGroups. So
Items belonging together as regards content should be
within one ItemGroup. But with our conditional
structures in mind we see the need for a stronger
structuring mechanism. If some of these Items depend
on the same condition it would be wise to put them in a
subgroup.

As stated in the ODM specification event
scheduling and time ordering of StudyEvents, Forms,
ItemGroups, and Items are not part of the specification
so far. Such data would provide additional value, e.g.
appointments could be generated. To merely generate
user interfaces, the included attribute OrderNumber for
ordering sub elements is sufficient.

3. Generation of User Interfaces

To solve the problem of mapping one application to
many platforms, we propose a model-driven
architecture (MDA) approach [3]. For our purposes
such an approach is applied to the mapping of ODM
towards a user interface. Generally, in an MDA
approach an abstract platform-independent model is
transformed into a platform-specific model from
which, in our case, the final UI can easily be derived
automatically.

Create Study

Transformation Transformation Transformation

CDISC
ODM

Windows CE Symbian OSPalm OS

Figure 1: Transformation of CDISC ODM to
different platforms.

3.1. Conceivable Approaches

To generate a user interface a platform-independent

model is needed. There are basically two options, an
executable tailored to a specific platform can be
generated or the model can be rendered directly on a
device. Figure 1 shows the steps involved from the
creation of a study to deploying it on the target
devices. ODM takes the place of the platform-
independent model here.

3.2. Generating Platform Specific Code

If an executable is desired, a transformation has to

be written for every device which needs to be
supported. Such a transformation contains a mapping
from the abstract model to concrete interface elements
as well as adaptations which are platform specific.

To implement this approach, platform-specific
transformations need to be designed and implemented.
By employing a cross compiler chain, executables can
be produced for each target platform. This would be a
costly approach, however, since all the transformations
would have to be written as well as adapted to the
various mobile devices.

3.3. Interpreting ODM

In case ODM should be interpreted on the device

itself, facilities for parsing the model and generation of
the user interface have to be provided. The
transformation then takes place on the device.

This variant is applicable for platforms with a
higher computing capacity like notebooks, whereas the
former variant (section 3.2) is preferred for devices
which cannot provide many resources. Parsers and
generators have to be written for every target platform.
The generators should make use of platform-specific
methods to make the most of the user interface.

3.4. Employing a User Interface Description

Language

Since both of the above approaches necessitate a

huge effort, a third approach seems more feasible.
There are existing user interface description languages
(UIDLs), which support and ease both approaches
described above. By transforming ODM into a suitable
UIDL the transformations or interpretations are taken
care of and only a minor transformation needs to be
written.

Create Study

Transformation Transformation Transformation

CDISC
ODM

Windows CE Symbian OSPalm OS

Transform to UIDL

UIDL

Figure 2: Transformation of CDISC ODM to
different platforms utilizing an intermediary
UIDL.

The transformation from ODM to a UIDL will
benefit from the fact, that the envisioned UIDL is also
an XML application. Therefore, a huge range of tools
is readily available to support this transformation step.
As figure 2 shows, only one specific transformation
needs to be facilitated, while the transformation steps
towards the device platforms can be utilized from other

projects dealing with generally transforming from a
UIDL to a concrete user interface.

4. Requirements for UIDLs

To get a study environment running on different
mobile platforms out of one description, a lot of
requirements have to be met at different levels. The
ODM has to be extended to keep all necessary
information concerning a good semantic description of
the study in the face of operating the study with mobile
devices.

4.1. User Interface Aspects

As far as the interface is concerned there are

primarily two aspects to be considered.
First, how completely can the CRF be mapped from

ODM onto a concrete user interface? The more
elements are available for that purpose the better. It is
also important how elements which are not transferable
can be described by combinations of different
available elements.

Second, how good is the support for mobile
devices? CRFs should be adapted to small screens and
a large number of small devices should be supported as
well. This process is ideally taken care of
automatically.

The possibility of limiting specific adaptations to a
platform is also important.

4.2. Programming Language Aspects

Concerning languages to be employed for

describing the interface there is the aspect of the
behaviour of the system at run-time for interpreted
languages which tend to be rather slow since it poses a
heavy strain on the device's resources. In the case of
compiled languages no performance penalties are to be
expected.

For both compiled and interpreted languages there
remains the aspect of their expressivity and power as
an important criterion in selecting a language.

A language employed to describe a user interface
for CRFs should support mappings to many different
platforms as well as a wide variety of widgets and
interaction patterns. At the same time it has to strive to
be as generic as possible. Mappings to new platforms
should be possible without too many adjustments to
the mapping itself.

Such a language should also provide for a way to
represent the sequence of interactions in a CRF. This

should be mapped to a flow between the widgets of the
concrete interface.

Hierarchical grouping of form elements should be
possible as well as inactivating conditional subgroups
in case they become irrelevant because of data entered
before.

On every supported platform it is expected that the
semantics of the CRF can be made good use of, e.g. a
pen-based device should toggle its input mode to
numbers or text according to the field currently being
edited.

After data entry, it should be possible to perform
syntactic checks on the data entered and to provide the
user with feedback on mistakes, such as data which are
out of a range.

5. Evaluation of UI Description Languages

By applying the above criteria to different UIDLs it
is possible to evaluate them and decide on the
language suited best to the objectives.

5.1. XForms

XForms is a technical recommendation developed
by the World Wide Web consortium [4]. Its focus is to
provide enhanced platform-independent forms for
web-browsers where the layout is taken care of by the
browser. Of course, an XForms-enabled browser has to
be available for all target platforms. Integration into an
existing (web-based) framework for RDE is simple,
since only the forms have to be distributed. Validation
of entered data can be done by employing constraints
in the XPath language.

Semantic support for entering data depends largely
on the integration of the browser into the platform. As
XForms is an interpreted language, it will in all
likelihood not be feasible on small devices like
palmtops or mobiles, at least for complex CRFs.
However, XML4Pharma [5] is a company employing
the XForms approach.

The elements of the ODM Study section are
mapped onto XForms elements. Validity checks are
mapped onto XPath and XML Schema Definition
expressions.

5.2. UIML

UIML was developed to facilitate building device-
independent user interfaces while promoting the se-
paration of the interface from the application logic [6].

A large number of technologies for small mobile
devices is supported, e.g. Java/JFC, PalmOS, WML,

HTML, and VoiceXML. The interface is adapted to
small screen resolutions automatically. Since it is
possible to interpret UIML at run-time and to generate
binaries for a number of target platforms, performance
problems are not prone to arise.

Automatic validation of entered data is not provided
per se, but can be contributed during the generation
process. Semantic support for data entry is also
possible.

The elements of the Study section of ODM are
mapped onto abstract user interface elements. Validity
checks would have to be translated into a programming
language which in turn incapacitates the platform
independence.

5.3. XIML

XIML was introduced as a UIDL to support design,
operation, organization, and evaluation functions in the
UI creation process. It provides abstract as well as
concrete elements and employs a multi-tier
architecture.

XIML is designed to support a wide variety of
devices and thus to support adaptation to small dis-
plays. The concept leaves open the question of whether
binaries are being generated or the language is being
interpreted. Semantic support for data entry would be
available if supported by the target platform [7].

The Study elements of ODM descriptions are
transformed into abstract user interface elements.
XIML is still in a stage in which it is impossible to
anticipate how translation of validation checks is to be
achieved.

5.4. TERESA

The Transformation Environment for inteRactivE

Systems representAtion, TERESA in short, is an
authoring-tool [8]. An abstract task model is created in
the form of a ConcurTaskTree [9], of which the user
interface is generated in multiple steps. TERESA is
multi-platform approach featuring adaptable
automation. By defining relations between multiple
abstract representations and abstract user interfaces it
is possible to describe the dynamic behavior of a
system.

The utilization of an abstract model as well as the
multi-platform functionality favor this approach. Since
the final user interfaces are generated for each target
platform, performance should be good.

Support for mobile devices is not complete; what is
more, before any automatic generation is possible,
transformations have to be adapted to each platform

because of the different interaction patterns.
Integration into a web-based framework might be
possible, but it would not prove simple since the
complete tool-chain has to be adapted to the
framework.

ODM descriptions need to be converted into
ConcurTaskTrees to be used, which is possible in
principle. However, in order to automate the UI
generation further research is needed since it is unclear
how the semantic information contained in ODM could
be used to an advantage in generating the concrete
interfaces.

6. Conclusions

ODM offers a good solution as a description
language for studies including CRFs. However it was
not designed to be used as a description language for
the corresponding user interfaces as well. Therefore,
we propose that by employing vendor extensions and
transforming ODM into an intermediate UIDL a
mapping to mobile platforms offers many gains.

ODM has certainly developed to be the language of
choice for describing CRFs as its standardization
shows. However, transforming ODM directly through
a rendering process to use it on many platforms is very
costly as has been shown above. Employing an
intermediate UIDL relieves the developer of the task of
implementing all the relevant transformations himself,
thus offering a sound solution to the problem.

There are several ways to implement a solution
which have been outlined in the section above.
Although a high-level tool like TERESA seems to fit
our approach best, we decided differently. The
transformation of ODM into ConcurTaskTrees is
complicated and the ensuing processing of the
ConcurTaskTrees necessitates too much manual work.

Transforming ODM to UIML is straightforward,
since most of the descriptions contained in ODM can
be mapped to descriptions in UIML. The available
UIML transformation then takes care of adapting the
descriptions to the mobile platforms being employed.

We are currently working on a mapping from ODM
to UIML to facilitate a prototype implementation. Our
goal are UIML descriptions which address special
features and pitfalls of our target platforms. The

resulting interfaces will be generated for and tested on
a range of small mobile devices which were selected
on a basis that they would fit typical clinical scenarios.
As a first result an implementation using UIML.net
[10] is currently under test. In the near future this
implementation will enter user trials to evaluate the
results.

7. References

[1] CDISC eSource Data Interchange (eSDI) Group:
"Leveraging the CDISC Standards to Facilitate the use of
Electronic Source Data within Clinical Trials",
http://www.cdisc.org/eSDI/forms/eSDI.pdf, Version 0.5,
2005

[2] CDISC ODM http://www.cdisc.org/models/odm/v1.2.1/
index.html

 [3] Jishnu Mukerji and Joaquin Miller, “Overview and guide
to OMG's architecture”, Object Management Group,
http://www.omg.org/mda, 2003.

[4] http://www.w3.org/MarkUp/Forms/

[5] http://www.xml4pharma.com/XForms/index.html

[6] Constantinos Phanouriou, "Uiml: A device-independent
user interface markup language", dissertation, Blacksburg,
Virginia, U.S.A., 2000.

[7] Angel Puerta, and Jacob Eisenstein, “XIML: a common
representation for interaction data”, Proceedings of the 7th
international conference on Intelligent user interfaces, 2002,
pp. 214-215.

[8] Silvia Berti, Giulio Mori, Fabio Paternò and Carmen
Santoro, “TERESA: A transformation-based environment for
designing multi-device interactive applications”,
Proceedings of the 9th international conference on
Intelligent user interface, 2004, pp. 352-353.

[9] Fabio Paternò, Cristiano Mancini and Silvia Meniconi,
“ConcurTaskTrees: A Diagrammatic Notation for Specifying
Task Models”, INTERACT, 1997, pp. 362-369.

[10] Kris Luyten and Karin Coninx, “Uiml.net: an Open
Uiml Renderer for the .Net Framework”, CADUI’2004, pp.
260-273, 2004

http://edm.luc.ac.be/english/research/researchers/9.html

	1 . Introduction
	2 . CDISC ODM
	2.1 . Design of ODM
	2.2 . Insufficiencies of ODM

	3 . Generation of User Interfaces
	3.1 . Conceivable Approaches
	3.2 . Generating Platform Specific Code
	3.3 . Interpreting ODM
	3.4 . Employing a User Interface Description Language

	4 . Requirements for UIDLs
	4.1 . User Interface Aspects
	4.2 . Programming Language Aspects

	5 . Evaluation of UI Description Languages
	5.1 . XForms
	5.2 . UIML
	5.3 . XIML
	5.4 . TERESA

	6 . Conclusions
	7 . References

